
Lecture Notes to Accompany

Scientific Computing

An Introductory Survey
Second Edition

by Michael T. Heath

Chapter 1

Scientific Computing

Copyright c© 2001. Reproduction permitted only for

noncommercial, educational use in conjunction with the

book.

1

Scientific Computing

What is scientific computing?

Design and analysis of algorithms for solving

mathematical problems in science and engi-

neering numerically

Traditionally called numerical analysis

Distinguishing features:

• continuous quantities

• effects of approximations

2

Scientific Computing

Why scientific computing?

Simulation of physical phenomena

Virtual prototyping of products

3

Well-Posed Problem

Problem well-posed if solution

• exists

• is unique

• depends continuously on problem data

Solution may still be sensitive to input data

Algorithm should not make sensitivity worse

4

General Strategy

Replace difficult problem by easier one having

same or closely related solution

• infinite −→ finite

• differential −→ algebraic

• nonlinear −→ linear

• complicated −→ simple

Solution obtained may only approximate that

of original problem

5

Sources of Approximation

Before computation:

• modeling

• empirical measurements

• previous computations

During computation:

• truncation or discretization

• rounding

Accuracy of final result reflects all these

Uncertainty in input may be amplified by prob-

lem

Perturbations during computation may be am-

plified by algorithm

6

Example: Approximations

Computing surface area of Earth using formula

A = 4πr2

involves several approximations:

• Earth modeled as sphere, idealizing its true

shape

• Value for radius based on empirical mea-

surements and previous computations

• Value for π requires truncating infinite pro-

cess

• Values for input data and results of arith-

metic operations rounded in computer

7

Absolute Error and Relative Error

Absolute error = approx value− true value

Relative error =
absolute error

true value

Equivalently,

Approx value = (true value)(1 + rel. error)

True value usually unknown, so estimate or

bound error rather than compute it exactly

Relative error often taken relative to approxi-

mate value, rather than (unknown) true value

8

Data Error and Computational Error

Typical problem: compute value of function

f :R→ R for given argument

x = true value of input, f(x) = desired result

x̂ = approximate (inexact) input

f̂ = approximate function computed

Total error = f̂(x̂)− f(x) =

(f̂(x̂)− f(x̂)) + (f(x̂)− f(x)) =

computational error + propagated data error

Algorithm has no effect on propagated data

error

9

Truncation Error and Rounding Error

Truncation error : difference between true re-

sult (for actual input) and result produced by

given algorithm using exact arithmetic

Due to approximations such as truncating in-

finite series or terminating iterative sequence

before convergence

Rounding error : difference between result pro-

duced by given algorithm using exact arith-

metic and result produced by same algorithm

using limited precision arithmetic

Due to inexact representation of real numbers

and arithmetic operations upon them

Computational error is sum of truncation error

and rounding error, but one of these usually

dominates
10

Example: Finite Difference Approx.

Error in finite difference approximation

f ′(x) ≈
f(x+ h)− f(x)

h

exhibits tradeoff between rounding error and

truncation error

Truncation error bounded by Mh/2, where M

bounds |f ′′(t)| for t near x

Rounding error bounded by 2ε/h, where error

in function values bounded by ε

Total error minimized when h ≈ 2
√
ε/M

Error increases for smaller h because of round-

ing error and increases for larger h because of

truncation error

11

Example: Finite Difference Approx.

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

step size

er
ro

r

truncation error rounding error

total error

12

Forward and Backward Error

Suppose we want to compute y = f(x), where

f :R→ R, but obtain approximate value ŷ

Forward error = ∆y = ŷ − y

Backward error = ∆x = x̂− x, where f(x̂) = ŷ

•x̂ • ŷ = f̂(x) = f(x̂)..

f•x •y = f(x)..

f

...
........

f̂
↑|

|↓

↑|

|↓
backward error forward error

13

Example: Forward and Backward Error

As approximation to y =
√

2, ŷ = 1.4 has ab-

solute forward error

|∆y| = |ŷ − y| = |1.4− 1.41421 . . . | ≈ 0.0142,

or relative forward error about 1 percent

Since
√

1.96 = 1.4, absolute backward error is

|∆x| = |x̂− x| = |1.96− 2| = 0.04,

or relative backward error 2 percent

14

Backward Error Analysis

Idea: approximate solution is exact solution to

modified problem

How much must original problem change to

give result actually obtained?

How much data error in input would explain all

error in computed result?

Approximate solution good if exact solution to

“nearby” problem

Backward error often easier to estimate than

forward error

15

Example: Backward Error Analysis

To approximate cosine function f(x) = cos(x),

truncating Taylor series after two terms gives

ŷ = f̂(x) = 1− x2/2

Forward error:

∆y = ŷ − y = f̂(x)− f(x) = 1− x2/2− cos(x)

To determine backward error, need value x̂

such that f(x̂) = f̂(x)

For cosine function,

x̂ = arccos(f̂(x)) = arccos(ŷ)

16

Example, continuted

For x = 1,

y = f(1) = cos(1) ≈ 0.5403,

ŷ = f̂(1) = 1− 12/2 = 0.5,

x̂ = arccos(ŷ) = arccos(0.5) ≈ 1.0472

Forward error:

∆y = ŷ − y ≈ 0.5− 0.5403 = −0.0403,

Backward error:

∆x = x̂− x ≈ 1.0472− 1 = 0.0472

17

Sensitivity and Conditioning

Problem insensitive, or well-conditioned, if rel-

ative change in input causes similar relative

change in solution

Problem sensitive, or ill-conditioned, if relative

change in solution can be much larger than

that in input data

Condition number:

cond =
|relative change in solution|
|relative change in input data|

=
|[f(x̂)− f(x)]/f(x)|

|(x̂− x)/x|
=
|∆y/y|
|∆x/x|

Problem sensitive, or ill-conditioned, if

cond� 1

18

Condition Number

Condition number is “amplification factor” re-

lating relative forward error to relative back-

ward error:∣∣∣∣∣ relative

forward error

∣∣∣∣∣ = cond×
∣∣∣∣∣ relative

backward error

∣∣∣∣∣
Condition number usually not known exactly

and may vary with input, so rough estimate or

upper bound used for cond, yielding∣∣∣∣∣ relative

forward error

∣∣∣∣∣ / cond×
∣∣∣∣∣ relative

backward error

∣∣∣∣∣

19

Example: Evaluating Function

Evaluating function f for approximate input

x̂ = x+ ∆x instead of true input x gives

Abs. forward err. = f(x+∆x)−f(x) ≈ f ′(x)∆x,

Rel. forward err. =
f(x+ ∆x)− f(x)

f(x)
≈
f ′(x)∆x

f(x)
,

cond ≈
∣∣∣∣∣f ′(x)∆x/f(x)

∆x/x

∣∣∣∣∣ =

∣∣∣∣∣xf ′(x)

f(x)

∣∣∣∣∣
Relative error in function value can be much

larger or smaller than that in input, depending

on particular f and x

20

Example: Sensitivity

Tangent function for arguments near π/2:

tan(1.57079) ≈ 1.58058× 105

tan(1.57078) ≈ 6.12490× 104

Relative change in output quarter million times

greater than relative change in input

For x = 1.57079, cond ≈ 2.48275× 105

21

Stability

Stability of algorithm analogous to condition-

ing of problem

Algorithm stable if result relatively insensitive

to perturbations during computation

From point of view of backward error analy-

sis, algorithm stable if result produced is exact

solution to nearby problem

For stable algorithm, effect of computational

error no worse than effect of small data error

in input

22

Accuracy

Accuracy refers to closeness of computed so-

lution to true solution of problem

Stability alone does not guarantee accuracy

Accuracy depends on conditioning of problem

as well as stability of algorithm

Inaccuracy can result from applying stable al-

gorithm to ill-conditioned problem or unstable

algorithm to well-conditioned problem

Applying stable algorithm to well-conditioned

problem yields accurate solution

23

Floating-Point Numbers

Floating-point number system characterized by

four integers:

β base or radix
p precision
[L,U] exponent range

Number x represented as

x = ±
(
d0 +

d1

β
+
d2

β2
+ · · ·+

dp−1

βp−1

)
βE,

where

0 ≤ di ≤ β − 1, i = 0, . . . , p− 1, and L ≤ E ≤ U

d0d1 · · · dp−1 called mantissa

E called exponent

d1d2 · · · dp−1 called fraction

24

Typical Floating-Point Systems

Most computers use binary (β = 2) arithmetic

Parameters for typical floating-point systems

shown below

system β p L U
IEEE SP 2 24 −126 127
IEEE DP 2 53 −1022 1023
Cray 2 48 −16383 16384
HP calculator 10 12 −499 499
IBM mainframe 16 6 −64 63

IEEE standard floating-point systems almost

universally adopted for personal computers and

workstations

25

Normalization

Floating-point system normalized if leading digit

d0 always nonzero unless number represented

is zero

In normalized system, mantissa m of nonzero

floating-point number always satisfies

1 ≤ m < β

Reasons for normalization:

• representation of each number unique

• no digits wasted on leading zeros

• leading bit need not be stored (in binary

system)

26

Properties of Floating-Point Systems

Floating-point number system finite and dis-

crete

Number of normalized floating-point numbers:

2(β − 1)βp−1(U − L+ 1) + 1

Smallest positive normalized number:

underflow level = UFL = βL

Largest floating-point number:

overflow level = OFL = βU+1(1− β−p)

Floating-point numbers equally spaced only be-

tween powers of β

Not all real numbers exactly representable; those

that are are called machine numbers
27

Example: Floating-Point System

Tick marks indicate all 25 numbers in floating-

point system having β = 2, p = 3, L = −1, and

U = 1

...

−4 −3 −2 −1 0 1 2 3 4

OFL = (1.11)2 × 21 = (3.5)10

UFL = (1.00)2 × 2−1 = (0.5)10

At sufficiently high magnification, all normal-

ized floating-point systems look grainy and un-

equally spaced like this

28

Rounding Rules

If real number x not exactly representable, then

approximated by “nearby” floating-point num-

ber fl(x)

Process called rounding, and error introduced

called rounding error

Two commonly used rounding rules:

• chop: truncate base-β expansion of x after

(p−1)st digit; also called round toward zero

• round to nearest: fl(x) nearest floating-

point number to x, using floating-point num-

ber whose last stored digit is even in case

of tie; also called round to even

Round to nearest most accurate, and is default

rounding rule in IEEE systems

29

Machine Precision

Accuracy of floating-point system character-

ized by unit roundoff, machine precision, or

machine epsilon, denoted by εmach

With rounding by chopping, εmach = β1−p

With rounding to nearest, εmach = 1
2
β1−p

Alternative definition is smallest number ε such

that fl(1 + ε) > 1

Maximum relative error in representing real num-

ber x in floating-point system given by∣∣∣∣∣fl(x)− x
x

∣∣∣∣∣ ≤ εmach

30

Machine Precision, continued

For toy system illustrated earlier,

εmach = 0.25 with rounding by chopping

εmach = 0.125 with rounding to nearest

For IEEE floating-point systems,

εmach = 2−24 ≈ 10−7 in single precision

εmach = 2−53 ≈ 10−16 in double precision

IEEE single and double precision systems have
about 7 and 16 decimal digits of precision

Though both are “small,” unit roundoff error
εmach should not be confused with underflow
level UFL

In all practical floating-point systems,

0 < UFL < εmach < OFL

31

Subnormals and Gradual Underflow

Normalization causes gap around zero in floating-

point system

If leading digits allowed to be zero, but only

when exponent at its minimum value, then gap

“filled in” by additional subnormal or denor-

malized floating-point numbers

...

−4 −3 −2 −1 0 1 2 3 4

Subnormals extend range of magnitudes repre-

sentable, but have less precision than normal-

ized numbers, and unit roundoff is no smaller

Augmented system exhibits gradual underflow

32

Exceptional Values

IEEE floating-point standard provides special

values to indicate two exceptional situations:

• Inf, which stands for “infinity,” results from

dividing a finite number by zero, such as

1/0

• NaN, which stands for “not a number,” re-

sults from undefined or indeterminate op-

erations such as 0/0, 0 ∗ Inf, or Inf/Inf

Inf and NaN implemented in IEEE arithmetic

through special reserved values of exponent

field

33

Floating-Point Arithmetic

Addition or subtraction: Shifting of mantissa

to make exponents match may cause loss of

some digits of smaller number, possibly all of

them

Multiplication: Product of two p-digit mantis-

sas contains up to 2p digits, so result may not

be representable

Division: Quotient of two p-digit mantissas

may contain more than p digits, such as non-

terminating binary expansion of 1/10

Result of floating-point arithmetic operation

may differ from result of corresponding real

arithmetic operation on same operands

34

Example: Floating-Point Arithmetic

Assume β = 10, p = 6

Let x = 1.92403× 102, y = 6.35782× 10−1

Floating-point addition gives

x+ y = 1.93039× 102,

assuming rounding to nearest

Last two digits of y do not affect result, and

with even smaller exponent, y could have had

no effect on result

Floating-point multiplication gives

x ∗ y = 1.22326× 102,

which discards half of digits of true product

35

Floating-Point Arithmetic, continued

Real result may also fail to be representable

because its exponent is beyond available range

Overflow usually more serious than underflow

because there is no good approximation to ar-

bitrarily large magnitudes in floating-point sys-

tem, whereas zero is often reasonable approx-

imation for arbitrarily small magnitudes

On many computer systems overflow is fatal,

but an underflow may be silently set to zero

36

Example: Summing a Series

Infinite series
∞∑
n=1

1

n

has finite sum in floating-point arithmetic even

though real series is divergent

Possible explanations:

• Partial sum eventually overflows

• 1/n eventually underflows

• Partial sum ceases to change once 1/n be-

comes negligible relative to partial sum:

1/n < εmach

n−1∑
k=1

(1/k)

37

Floating-Point Arithmetic, continued

Ideally, x flop y = fl(x op y), i.e., floating-

point arithmetic operations produce correctly

rounded results

Computers satisfying IEEE floating-point stan-

dard achieve this ideal as long as x op y is within

range of floating-point system

But some familiar laws of real arithmetic not

necessarily valid in floating-point system

Floating-point addition and multiplication com-

mutative but not associative

Example: if ε is positive floating-point number

slightly smaller than εmach,

(1 + ε) + ε = 1, but 1 + (ε+ ε) > 1

38

Cancellation

Subtraction between two p-digit numbers hav-

ing same sign and similar magnitudes yields

result with fewer than p digits, so it is usually

exactly representable

Reason is that leading digits of two numbers

cancel (i.e., their difference is zero)

Example:

1.92403×102−1.92275×102 = 1.28000×10−1,

which is correct, and exactly representable, but

has only three significant digits

39

Cancellation, continued

Despite exactness of result, cancellation often

implies serious loss of information

Operands often uncertain due to rounding or

other previous errors, so relative uncertainty in

difference may be large

Example: if ε is positive floating-point number

slightly smaller than εmach,

(1 + ε)− (1− ε) = 1− 1 = 0

in floating-point arithmetic, which is correct

for actual operands of final subtraction, but

true result of overall computation, 2ε, has been

completely lost

Subtraction itself not at fault: it merely signals

loss of information that had already occurred

40

Cancellation, continued

Digits lost to cancellation are most significant,

leading digits, whereas digits lost in rounding

are least significant, trailing digits

Because of this effect, it is generally bad idea

to compute any small quantity as difference of

large quantities, since rounding error is likely

to dominate result

For example, summing alternating series, such

as

ex = 1 + x+
x2

2!
+
x3

3!
+ · · ·

for x < 0, may give disastrous results due to

catastrophic cancellation

41

Example: Cancellation

Total energy of helium atom is sum of kinetic

and potential energies, which are computed

separately and have opposite signs, so suffer

cancellation

Year Kinetic Potential Total
1971 13.0 −14.0 −1.0
1977 12.76 −14.02 −1.26
1980 12.22 −14.35 −2.13
1985 12.28 −14.65 −2.37
1988 12.40 −14.84 −2.44

Although computed values for kinetic and po-

tential energies changed by only 6% or less,

resulting estimate for total energy changed by

144%

42

Example: Quadratic Formula

Two solutions of quadratic equation

ax2 + bx+ c = 0

given by

x =
−b±

√
b2 − 4ac

2a
Naive use of formula can suffer overflow, or
underflow, or severe cancellation

Rescaling coefficients can help avoid overflow
and harmful underflow

Cancellation between −b and square root can
be avoided by computing one root using alter-
native formula

x =
2c

−b∓
√
b2 − 4ac

Cancellation inside square root cannot be eas-
ily avoided without using higher precision

43

Example: Standard Deviation

Mean of sequence xi, i = 1, . . . , n, is given by

x̄ =
1

n

n∑
i=1

xi,

and standard deviation by

σ =

 1

n− 1

n∑
i=1

(xi − x̄)2

1
2

Mathematically equivalent formula

σ =

 1

n− 1

 n∑
i=1

x2
i − nx̄

2

1
2

avoids making two passes through data

Unfortunately, single cancellation error at end

of one-pass formula is more damaging numeri-

cally than all of cancellation errors in two-pass

formula combined
44

Mathematical Software

High-quality mathematical software is available

for solving most commonly occurring problems

in scientific computing

Use of sophisticated, professionally written soft-

ware has many advantages

We will seek to understand basic ideas of meth-

ods on which such software is based, so that

we can use software intelligently

We will gain hands-on experience in using such

software to solve wide variety of computational

problems

45

Desirable Qualities of Math Software

• Reliability

• Robustness

• Accuracy

• Efficiency

• Maintainability

• Portability

• Usability

• Applicability

46

Sources of Math Software

FMM: From book by Forsythe/Malcolm/Moler

HSL: Harwell Subroutine Library

IMSL: Internat. Math. & Stat. Libraries

KMN: From book by Kahaner/Moler/Nash

NAG: Numerical Algorithms Group

Netlib: Free software available via Internet

NR: From book Numerical Recipes

NUMAL: From Math. Centrum, Amsterdam

SLATEC: From U.S. Government labs

SOL: Systems Optimization Lab, Stanford U.

TOMS: ACM Trans. on Math. Software
47

Scientific Computing Environments

Interactive environments for scientific comput-

ing provide

• powerful mathematical capabilities

• sophisticated graphics

• high-level programming language for rapid

prototyping

MATLAB is popular example, available for most

personal computers and workstations

Similar, “free” alternatives include octave, RLaB,

and Scilab

Symbolic computing environments, such as Maple

and Mathematica, also useful

48

